
Load Latency Tolerance In Dynamically Scheduled Processors

Srikanth T. Srinivasan and Alvin R. Lebeck
Department of Computer Science

Duke University
Durham, North Carolina 27708 USA

{sri,alvy}@cs.duke.edu

a
T
a
n

n
c

a

i

u
i

n

v
a
u

u
d
r
u

n
l
n

ts

en-
ns

r-
uc-
ss
a

uc-
he
er
10
In

nd
r-
cy
er-
ely

n-
i-
e
y

c-
al
le.
n

d
nd
en
of
e

can
n
to
.

Abstract

This paper provides quantitative measurements of lo
latency tolerance in a dynamically scheduled processor.
determine the latency tolerance of each memory lo
operation, our simulations use flexible load completio
policies instead of a fixed memory hierarchy that dictate
the latency. Although our policies delay load completio
as long as possible, they produce performance (instru
tions committed per cycle (IPC)) comparable to an ide
memory system where all loads complete in one cycle. O
measurements reveal that to produce IPC values with
8% of the ideal memory system, between 1% and 62%
loads need to be satisfied within a single cycle and that
to 84% can be satisfied in as many as 32 cycles, depend
on the benchmark and processor configuration. Loa
latency tolerance is largely determined by whether a
unpredictable branch is in the load’s data dependenc
graph and the depth of the dependence graph. Our resu
also show that up to 36% of all loads miss in the level on
cache yet have latency demands lower than second le
cache access times. We also show that up to 37% of lo
hit in the level one cache even though they possess eno
latency tolerance to be satisfied by lower levels of th
memory hierarchy.

1 Introduction

Many of today’s microprocessors use dynamic sched
ing [17,18] to maximize the number of instructions issue
per cycle. By buffering instructions that are waiting fo
their operands and executing other independent instr
tions out of order, the processor is able to tolerate som
long latency operations—including cache misses. To fi
enough independent instructions, most processors emp
sophisticated branch prediction mechanisms [13, 21] a
This work supported in part by NSF CAREER Award MIP-97-02547,
DARPA Grant DABT63-98-1-0001, NSF Grants CDA-97-2637 and
CDA-95-12356, Duke University, and an equipment donation throug
Intel Corporation’s Technology for Education 2000 Program. The view
and conclusions contained herein are those of the authors and should
be interpreted as necessarily representing the official policies or endors
ments, either expressed or implied, of the U.S. Government.

te
he
the
ow
ra-
h
s
not
e-

d
o
d

s

-
l
ur
n
of
p
ng
d

e
lts
e
el
ds
gh

e

l-

c-
e
d
oy
d

allow speculative execution [4, 9, 19], committing resul
only when the true outcome of a branch is known.

Unfortunately, because of finite resources, data dep
dencies and imperfect branch prediction, some operatio
must complete quickly to maximize processor perfo
mance. Consider a processor capable of issuing 8 instr
tions per cycle and a 10 cycle level two cache acce
latency. In the time it takes the level two cache to satisfy
load request, the processor could issue up to 80 instr
tions. If many of these instructions are dependent on t
value returned by the load and there is insufficient buff
space because of previous long latency operations, the
cycle load operation would cause the processor to stall.
contrast, if many of the instructions are independent a
there is sufficient buffer space, their execution could ove
lap with the load, and not stall the processor. Load laten
tolerance exists in the latter case, when a memory ref
ence can take many cycles to complete without advers
affecting performance.

The first contribution of this paper is to present a qua
titative evaluation of load latency tolerance in a dynam
cally scheduled processor. Using SimpleScalar [2] w
measure individual load instruction latency tolerance b
forcing their completion such that the number of instru
tions committed per cycle (IPC) is comparable to an ide
memory system that satisfies all requests in a single cyc
We evaluate a variety of polices to force load completio
in an effort to balance high IPC values with long loa
latencies. We find that using mispredicted branches a
the depth of a load’s dependence graph to determine wh
loads should complete, produces IPC values within 8%
the ideal memory system, while yielding noticeabl
latency tolerance.

Our measurements, on an 8 issue processor that
have up to 256 instructions in flight, show that betwee
13% and 62% of the loads in our benchmarks need
complete in one cycle and that 58% to 98% must comple
in 8 cycles. Reducing the issue width to 4, reduces t
number of one cycle loads to between 1% and 46% and
number of 8 cycle loads to 5% to 88%. These results sh
that many loads could be satisfied with latencies compa
ble to second-level cache hit times.

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
2005 2. REPORT TYPE

3. DATES COVERED
 -

4. TITLE AND SUBTITLE
Load Latency Tolerance In Dynamically Scheduled Processors

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Defense Advanced Research projects Agency,3701 North Fairfax
Drive,Arlington,VA,22203-1714

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT
see report

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

18. NUMBER
OF PAGES

12

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

on
a

to
s-

c-
n
r
it-
g
d

e
is

s
uld

is

ol-

ine
ry
in
ter-
y
ng
e
l-
the
r-

ur-
the
to
le,
for
ry
el

dur-
The second contribution of this paper is an evaluation
of the match between the latencies incurred in a traditional
memory hierarchy and an application’s inherent latency
demands. We find that between 2% and 36% of loads
requiring latency below 8 cycles miss in the first level
cache, depending on the cache size and application. Fur-
thermore, our results reveal that between 2% and 37% of
loads that hit in the first level cache have enough latency
tolerance that they could be satisfied by lower levels of the
memory hierarchy.

The remainder of this paper is organized as follows.
Section 2 provides background information. Section 3
describes our technique for measuring the available load
latency tolerance. Our experimental methodology is pre-
sented in Section 4, and Section 5 presents our results.
Section 6 concludes this paper.

2 Background

Superscalar processors maximize serial program per-
formance by issuing multiple instructions per cycle. Each
cycle the processor attempts to issue up toissue-width
instructions. One of the most important aspects of these
systems is identifying independent instructions that can
execute in parallel.

2.1 Scheduling, Prediction, and Speculation

In order to identify and exploit instruction level paral-
lelism, most of today’s processors employ dynamic sched-
uling, branch prediction, and speculative execution.
Dynamic scheduling is an all hardware technique for iden-
tifying and issuing multiple independent instructions in a
single cycle. The hardware looks ahead by fetching
instructions into a buffer—called anissue window—from
which it selects instructions to issue to the functional units.
Instructions are issued only when all their operands are
available, and independent instructions can execute out-of-
order. Results of instructions executed out-of-order are
committed to the register file in program order.

The issue window is filled with instructions from sev-
eral basic blocks by predicting the direction of conditional
branches [3, 6, 10, 12, 14]. Furthermore, the instructions
from the predicted path are speculatively executed, hoping
the branch prediction is correct. These instructions can not
update the architectural state of the processor until the true
outcome of the branch is determined. While waiting for
the branch computation, these instructions occupy valu-
able buffer space potentially reducing the issue rate.

The above techniques are very effective for well-
behaved programs with short-latency operations. How-
ever, long latency operations, such as load cache misses,
can reduce their effectiveness for the following reasons:

1. Data Dependencies: If the operands of instructioni
are produced by a previous instructionj, then i is
dependent onj, and i can begin execution only afterj
has completed. Clearly, instructioni can not be issued
in the same cycle asj. While looking ahead, if most of
the newly dispatched instructions are dependent
earlier issued instructions waiting to complete, even
dynamically scheduled processor will be unable
identify ready instructions to execute, and the proce
sor utilization will go down.

2. Finite Resources: The number of instructions the pro-
cessor can look ahead to identify independent instru
tions is limited by the number of available entries i
the issue window. Dependent instructions waiting fo
the result of a load and independent instructions wa
ing to commit their results occupy entries. For lon
latency operations, the window could become full an
stall the processor.

3. Branch Misprediction : When the predicted outcome
of a branch is incorrect, the work performed by th
processor while executing along the incorrect path
useless.1 If computation of the true branch outcome i
delayed because of a cache miss, the processor co
waste many cycles before the misprediction
detected.

The remainder of this paper examines load latency t
erance in the context of the above potential limitations.

3 Measuring Load Latency Tolerance

This section presents the policies we use to determ
the latency tolerance of load instructions. Our prima
goal is to quantify the amount of latency tolerance
dynamically scheduled processors. We also want to de
mine if there is variation among individual load latenc
tolerance. That is, do some loads require fast servici
while others can be satisfied in longer amounts of tim
without degrading performance? Finally, we want to eva
uate the match between a load’s latency tolerance and
latency it incurs in a conventional cache memory hiera
chy.

We compute the latency tolerance of a load by meas
ing the number of cycles that elapse between the time
load is issued and the time it completes. A load is issued
the memory system when its effective address is availab
and it completes when the referenced data is available
use by dependent instructions. In a traditional memo
system, a load’s latency depends primarily on which lev
in the memory hierarchy satisfies the request.

1. Recent techniques show how to reuse some of the results obtained
ing speculative execution [15].

us-

of
re-
e
m-
n-
ed
ce.

o be

cute
a
hes

-
ing
h.
s
the
c-
a

s-
ro-
or

r-
ent
gh
or
ds
ber
le

a
ry
ur-

te,
he
ich
the
-

he
e
th.
d

Our goal is to determine how long a load can be out-
standing without causing degradation in performance.
Hence, we do not complete a load as long as the processor
is able to do useful work by looking ahead and executing
independent instructions. In particular, we want our mea-
sured latencies to reflect a program execution that achieves
IPC close to that of an ideal memory system, where all ref-
erences complete in one cycle.

Previous studies, that examined latency tolerance in
decoupled architectures [8], analyzed the effects of
increasing memory latency for systems both with and
without caches. In the systems without caches, this pro-
duces a uniform increase in latency for all memory
accesses. This type of analysis can provide some insight
into latency tolerance. However, it is an all or nothing
approach where every load has the same cost, and is suit-
able only for specific memory system designs. Similarly,
increasing the memory latency in cache based systems
does not accurately measure individual load latency toler-
ance, and the results may be highly dependent on the
cache organization. The latency tolerance of references
that hit in the cache is not measured, even though it may
be quite large.

Our methodology extends this previous work, and is
targeted at measuring the latency tolerance of individual
load instructions. We rely on the ability to force comple-
tion of loads at arbitrary times to ensure the processor is
able to continue issuing instructions. Note this approach
measures latency tolerance in the context of a processor
with constrained resources. Eliminating these constraints
would be an interesting study, but is beyond the scope of
this paper.

In our scheme, the measurement of load latency is
decomposed into the following four steps, which we elab-
orate on in the remainder of this section:
1. Determining that one or more loads should complete,
2. Determining when the load(s) should complete,
3. Determining which specific load(s) should complete,

and
4. Determining how many loads should complete.

3.1 Determining that Loads Should Complete

Our goal is to allow loads to remain outstanding as long
as they are not adversely affecting performance. There-
fore, to determine if any load(s) should be forced to com-
plete we must first determine if the processor performance
is degrading. Recall that the performance of dynamically
scheduled processors can degrade because it is unable to
execute independent instructions due to limited buffer
space, data dependencies, or it executes useless instruc-
tions due to incorrect branch prediction. Therefore, we
force loads to complete if their results ensure the processor

executes useful instructions or enable the processor to s
tain reasonable execution rates.

Branch-based Load Completion

Most modern processors predict the outcome
branches and speculatively execute instructions on the p
dicted path. On a misprediction, all the work done by th
processor in speculative mode is useless. Delaying co
pletion of a load on which a branch instruction is depe
dent can increase the number of mis-speculat
instructions executed and therefore degrade performan
Hence, loads on which branches are dependent need t
given priority for early completion. Moreover, it is only
mispredicted branches that cause the processor to exe
useless instructions. Therefore, it is sufficient to force
load to complete as soon as a mispredicted branch attac
itself to the load’s dependency graph.

Performance-based Load Completion

Using branch prediction information to force comple
tion of certain loads ensures the processor is execut
useful instructions. However that alone is not enoug
Arbitrarily delaying completion of the rest of the load
will aggravate the data dependencies problem and
finite resources problem mentioned in the previous se
tion. This could prevent the processor from sustaining
reasonable level of performance.

To decide if loads should complete because of proce
sor performance, we can monitor one of two standard p
cessor performance metrics: instruction issue rate
functional unit utilization. When the processor perfo
mance drops, we complete loads freeing up depend
instructions as well as buffer space. In order to attain hi
IPCs we do not delay load completion until the process
actually comes to a stand still. Rather, we complete loa
as soon as the number of instructions issued or the num
of computational units that are busy drops below a tunab
threshold.

Loads can also be forced to complete when there is
system call. However, for our benchmarks there are ve
few system calls, therefore we do not discuss this case f
ther in this paper.

3.2 Determining Which Loads to Complete
Once it is determined that some load(s) must comple

we need to decide which specific load to complete. In t
case of mispredicted branches, clearly the load on wh
the branch is dependent must be completed to ensure
execution of useful instructions. In contrast, we have com
plete freedom to choose any load for completion when t
issue rate or functional unit utilization decreases. W
investigate two policies: fifo and dependence graph dep
The fifo policy simply forces the longest outstanding loa

2

on-
e
4
1
are
k
d

m-
e.
t a
t it
hat
nd

ad.

m
ss
at
d

k
d

or,
ad
s.
ule
ing
of
f
in-
of

an
e

so
g
u-

ns

l
e

ed
nal-
red
ry

ic-
im-
of
ac-
to complete. The second policy tracks the depth of a load’s
dependence graph in cycles. The load with the largest
value is chosen for completion, since delaying it can
occupy resources for an extensive period of time.

3.3 Determining When Should Loads Complete
Having established which loads to complete, the next

step is to determine when (i.e., in which cycle) they must
complete. To minimize execution of useless instructions
due to mispredicted branches, we must complete the
appropriate load such that the entire dependence chain
between the load and the branch completes execution
before the branch. This requires the load to complete many
cycles before we actually detect the mispredicted branch.
Section 4 describes how our simulations accomplish this.
If the load is forced to complete because of issue rate or
functional unit utilization, we could naively complete it in
the same cycle that we detected the degradation in perfor-
mance. However, this may not provide enough time for the
pipeline to fill up with ready instructions, and we may
want the load to complete earlier. Therefore, we use a tun-
able threshold for loadprecompletiontime to study the
effect of pipeline fill-up time on load latency tolerance.

3.4 Determining How Many Loads to Complete
Finally, in order to obtain an instruction issue rate or

functional unit utilization above the set threshold, we may
need to complete more than one load in a given cycle. An
important parameter in this scenario is the limit on the
number of loads that may complete. We study this by lim-
iting the number of loads that can complete in a single
cycle to one, two, or four.

4 Experimental Methodology

To perform our measurements we modified SimpleSca-
lar [2], which models a dynamically scheduled processor
using a Register Update Unit (RUU) and a Load/Store
Queue (LSQ) [16]. The processor pipeline stages are:
Fetch: Fetch instructions from the program instruction
stream.
Dispatch: Decode instructions, allocate RUU, LSQ
entries.
Issue/Execute: Execute ready instructions if the required
functional units are available.
Writeback : Supply the results of the operation to depen-
dent instructions.
Commit: Commit results to the register file in program
order, free RUU and LSQ entries.

Our baseline processor is an 8-issue machine with 8
integer adders, 4 integer multiply/divide units, 8 floating
point adders, 4 floating point multiply/divide units, and 8
cache ports. We assume 256 RUU entries and 128 LSQ

entries, a 2-level branch predictor with a total of 819
entries, and that all stores complete in a single cycle.

When necessary we assume a base two level cache c
figuration using a 32KB direct-mapped L1, with 32 byt
blocks and 8 ports. The L2 is 1MB direct-mapped with 6
byte blocks, a single port and 8 cycles to satisfy an L
miss. Both caches support up to 16 outstanding misses,
fetch-on-write writeback, and have a 24 entry write-bac
buffer with a high watermark of 12. Contention is modele
in all parts of the memory system.

Many of the load completion policies outlined in the
previous section decouple detecting that a load must co
plete from determining when the load should complet
Therefore, it is possible for our scheme to determine tha
load should have completed even before we detect tha
should complete. Recall the scenario where we detect t
a load should complete when a branch is dispatched a
attaches itself to the dependence graph of the lo
Assume this detection occurs at cyclet and there ared
cycles worth of instructions in the dependence chain fro
the load to the branch. To minimize execution of usele
instructions, we determine that the load should complete
cycle (t-d), d cycles before we even establish the loa
should complete.

To support this type of analysis, we added rollbac
capabilities to our simulator. This allows us to look ahea
to compute load completion time, rollback the process
and then restart execution using the predetermined lo
latency. The replayed execution may itself incur rollback
This technique ensures the processor instruction sched
is determined by the measured latency values. Support
rollback requires logging all processor state at the end
each simulated cycle. We limit the maximum number o
cycles a load can be outstanding to 32 and therefore a s
gle load can cause the processor to rollback a maximum
32 cycles.

Simulating a detailed out-of-order processor takes
enormous amount of time, and the rollback capabilities w
added only increase simulation time. Therefore, we al
modified SimpleScalar to support sampling. Our samplin
technique alternates between a detailed out-of-order sim
lator and a faster functional simulator that also maintai
the contents of the memory hierarchy.

Finally, to evaluate the effectiveness of traditiona
memory hierarchies at capturing latency tolerance, w
simulate a two-level memory hierarchy, as describ
above, in the same execution as the latency tolerance a
ysis. This enables comparison between the measu
latency tolerance and where in the conventional memo
hierarchy the request is satisfied. The load timing is d
tated by the latency tolerance measurements, and we s
ply track the contents of the memory hierarchy. Because
the different processor schedule, there may be some in

os
ce
at
d

k)
ng

at
we
d 8
pe-
ry
al
les.
to
ry
s.

ly
ses
er
ly

ro-
an
me
m
i-
tis-
in
he
curacies on the contents of the caches compared to an exe-
cution with load latency dictated by the conventional
caches. However, we believe our approach is sufficient for
this study.

The following section presents our analysis using a
subset of the SPEC95 benchmarks:compress , gcc , li ,
vortex , hydro2d , swim , tomcatv , and wave. The
benchmarks are all compiled using the version ofgcc
provided with SimpleScalar and with optimization -O2.
We run each benchmark operating on itsreferencedata set
until 10 billion instructions commit using 1% sampling.
This sampling ratio produces IPC values within 5% of
complete simulations.

5 Experimental Results

This section presents our simulation results. We begin
by examining the performance of our benchmarks for dif-
ferent memory systems. This is followed by analysis of the
effects of branch prediction on latency tolerance. We then
analyze the effects of varying how to determine that loads
should complete, how to select loads to complete, how to
compute the time that loads should complete, and how
many loads are completed. We finish by examining vari-
ous processor configurations and investigating the match
between the latencies incurred in conventional multi-level
memory hierarchies and the program’s measured latency
tolerance.

5.1 Fixed Latency Memory Systems

One approach to obtain information on the amount of
latency tolerance in a system is to evaluate its performance
for various memory system delays. We performed this
experiment by examining memory systems ranging from
simple fixed cost memory accesses with no contention to
detailed memory hierarchies with contention accurately
modeled at all levels. The fixed cost memory systems
assume all loads take the same amount of time, we exam-
ined 1, 8, and 32 cycle memory accesses. The detailed
two-level memory hierarchies assume the base 1MB sec-
ond level cache, but vary the first-level configuration and
the second-level miss penalty. Specifically, we simulated a
direct-mapped and two-way set-associative 32KB L1
cache with a 32 cycle memory latency (memlat32-
{dm,2way}32k) and a direct-mapped 32KB L1 with a 64
cycle memory latency (memlat64-dm32k).

Figure 1 shows the performance of our benchmarks in
terms of committed instructions per cycle (IPC) for the
above memory system configurations. We make several
observations from these results. First, for three of the inte-
ger benchmarks (gcc , li , and vortex) the traditional
memory systems achieve IPC values close to the ideal
memory system. This is not surprising, given the low miss

ratios of these benchmarks, 2%, 1.4%, and 1.5% forgcc ,
li , andvortex , respectively, for a direct-mapped 32KB
L1 cache. The other benchmarks exhibit L1 miss rati
over 4%, thus increasing the discrepancy in performan
compared to the ideal memory system. We note th
increased associativity has little effect on overall IPC, an
that increasing the L2 miss penalty (memlat64-dm32
dramatically reduces the performance of three floati
point benchmarks (hydro2d , swim , tomcatv), while
all other benchmarks exhibit a small reduction in IPC.

Another observation from the data in Figure 1 is th
the performance of all benchmarks decreases as
increase the latency for all memory accesses (ideal, fixe
cycles, fixed 32 cycles). The integer programs are es
cially sensitive to the increases in fixed cost memo
delays, and their IPC values drop below the tradition
memory system when all memory accesses take 8 cyc
In contrast, the floating point codes show less sensitivity
a fixed cost delay of 8 cycles. Further increases in memo
latency continue to decrease the IPC for all program
However, we point out the results of swim that show on
moderate reduction in IPC even when all memory acces
take 32 cycles. This performance is dramatically high
than the detailed two-level memory hierarchy main
because of contention within the memory hierarchy.

The above analysis of fixed cost memory accesses p
vides some insight into latency tolerance. However, it is
all or nothing approach where every load has the sa
cost, and is suitable only for specific memory syste
designs. The uniform cost model doesn’t exist in mult
level memory hierarchies where some loads can be sa
fied faster than others. Therefore, as described
Section 3, our methodology is targeted at measuring t

Figure 1: Memory System Configuration and IPC

compress gcc li vortex hydro2d swim tomcatv wave0.0

1.0

2.0

3.0

4.0

5.0

6.0

IP
C

ideal (i cycle)
memlat32-dm32k
memlat32-2way32k
memlat64-dm32k
fixed (8 cycles)
fixed (32 cycles)

to
r-
s’

fect
for
ly

nce

sed

d

latency tolerance of individual load instructions. The
remainder of this section presents our results.

5.2 Determining that Loads Must Complete
This section investigates the policies for determining

when loads must complete in order to sustain performance
comparable to an ideal memory system. We begin by
examining how branch prediction affects load latency tol-
erance. This is followed by analysis of instruction issue
rate and functional unit utilization as metrics for determin-
ing load completion.

Branch Prediction and Load Latency Tolerance

We compare perfect branch prediction to our base two-
level predictor using various policies for determining that
loads should complete. For the two-level branch predictor,
the first policy always forces loads to complete if any
branch attaches itself to the load’s dependence chain (2-
lev, all). The next policy is similar, except it forces a load
to complete only if the branch is mispredicted (2-lev,
mispred).1 Finally, for both the two-level and perfect
branch predictor we evaluate a policy that does not use any
branch information to force completion of loads (2-lev,
none and perfect, none). In all of these simulations we
make the following assumptions, loads not forced to com-
plete by a branch are completed according to an instruc-
tion issue threshold of four instructions per cycle, up to
four loads can complete per cycle, which load to complete
is determined by the dependence graph depth, and we
assume a precompletion time of two cycles. We evaluate
these parameters later in this section. For comparison, we
also simulate the ideal memory system for both the two-
level predictor (2-lev ideal) and perfect prediction (perfect
ideal).

Throughout this section we present our results in two
parts: IPC and latency tolerance. IPC results are presented
like those in Figure 1. We present latency tolerance in
terms of the fraction of loads that must complete in a spe-
cific number of cycles. Loads that must complete in a
small number of cycles, do not exhibit latency tolerance
and loads that can take many cycles to complete do exhibit
tolerance. Loads are forced to complete according to the
appropriate policy, or if they’ve been outstanding for 32
cycles.

Figure 2 shows the effects of branch prediction on IPC,
while Figure 3 shows the corresponding latency tolerance
values. From Figure 2, we see that the 2-level predictor
policies that exploit branch information to force load com-
pletion, meet our goal of IPC close to an ideal memory
system. Furthermore, we see that using only mispredicted

branches produces similar IPC values as forcing loads
complete for all branches, and that ignoring branch info
mation entirely dramatically reduces the integer program
IPC values. We also see the expected result that per
branch prediction dramatically increases performance
the integer codes. The two-level predictor achieves on
88% accuracy forcompress , 81% forgcc , 86% forli ,
and 89% forvortex . The floating point codes exhibit
somewhat higher prediction rates (hydro2d 99%,swim
99%, tomcatv 92%,wave 90%). More sophisticated
branch predictors may produce higher accuracies, he
increased IPC rates.

For the integer benchmarkscompress , gcc and li ,
between 20% and 25% of the loads are completed ba
on mispredicted branch information, 7% forvortex and
less than 2% for the floating point benchmarks. With loa

1. This is possible to simulate because in SimpleScalar we can determine
very early in the simulation cycle if a branch is mispredicted.

Figure 2: Branch Prediction and IPC.

compress gcc li vortex hydro2d swim tomcatv wave0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

IP
C

2-lev, ideal
2-lev, all
2-lev, none
2-lev, mispred

perfect, none
perfect, ideal

8 16 24 32

20
40
60
80

100

2−lev, all
2−lev, none
2−lev, mispred
perfect, none

20
40
60
80

100
20
40
60
80

100

8 16 24 32

20
40
60
80

100

8 16 24 32

20
40
60
80
100
20
40
60
80
100
20
40
60
80
100

8 16 24 32

20
40
60
80
100

vortex

li

gcc

compress hydro2d

swim

tomcatv

wave

Load latency tolerance (cycles)

C
u

m
u

la
ti
v
e

 %
 o

f
lo

a
d

s
 c

o
m

p
le

te
d

Figure 3: Branch Prediction and Latency Tolerance

er-

for
is

t
cy
e

can
es
a
-

uc-

s-
ro-
completion based on mispredicted branches enabled, we
see a considerable reduction in the average dispatch-issue
delay for branches (time for the operands of the branch to
become available) for the integer benchmarks. Also, the
number of speculative instructions executed drops by up to
61% for the integer benchmarks. The effect on the floating
point benchmarks is considerably less.

From Figure 3 we see that loads do exhibit variation in
completion delays, and there is significant variation
among benchmarks. Between 13% and 62% of loads need
to complete in one cycle, while 58% to 98% of the loads
need to complete within eight cycles. Furthermore, the
floating point programs exhibit very little variation in load
latency for the various branch-based load completion
schemes. In contrast, the integer programs are sensitive to
these factors. In particular, differentiating mispredicted
branches from accurately predicted branches produces
noticeable improvements in load latency tolerance without
significant changes in IPC. Ignoring branches altogether
yields high latency tolerance, but the IPC values are too
low. The final observation from these results is that
improvements in branch prediction will increase the
amount of latency tolerance for the integer programs, as
indicated by the increases seen for perfect branch predic-
tion.

Processor Performance and Load Latency Tolerance

The second source of information for determining if
loads should complete is processor performance. Here, we
examine the instruction issue rate and functional unit utili-
zation as metrics for determining that loads should com-
plete. We assume that mispredicted branches force
completion of loads, precompletion time is 2 cycles, and
up to four loads can complete per cycle.

Figure 4 shows the effect of issue rate thresholds of 1
(nis1), 2 (nis2) and 4 (nis4), and a functional unit utiliza-
tion threshold of 4 (fub4) on instructions per cycle. When-
ever the processor issue rate (or number of busy functional
units in the case of fub4) drops below this threshold, we
force loads to complete. For comparison, we include the
IPC values for the traditional memory system (memlat32-
dm32k) and the fixed 8 cycle memory system. From this
data we see that functional unit utilization produces
slightly higher IPC values than instruction issue rate (fub4
vs. nis4). The simulations also reveal that decreasing the
instruction issue rate threshold produces a commensurate
decrease in IPC. We note that for all but three of the inte-
ger benchmarks, IPC values are still higher than the tradi-
tional two-level memory system even when the threshold
is one instruction per cycle. As mentioned previously, the
three integer programs have low L1 miss rates, and they
achieve near ideal performance. We also note that for
swim , functional unit utilization actually achieves higher

IPC than the ideal memory system because of the diff
ence in the processor instruction issue schedule.

Figure 5 shows the corresponding latency tolerance
the various issue rate thresholds. The first observation
that although functional unit utilization (fub4) has a sligh
performance advantage, it produces much lower laten
tolerance than the instruction issue rate metric (nis4). W
also observe that decreasing the issue rate threshold
dramatically increase the latency tolerance. This match
our intuition that if the processor is consuming data at
lower rate, it can take longer for the data to arrive. How
ever, the cost of this increased latency tolerance is red
tion in IPC. A four instruction per cycle threshold
produces IPC values within 8% of the ideal memory sy
tem, whereas a threshold of one instruction per cycle p

compress gcc li vortexhydro2d swim tomcatv wave0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

IP
C

ideal (1 cycle)
fub4
nis4
nis2
nis1
memlat32-dm32k
fixed (8 cycles)

Figure 4: Performance-based completion and IPC

8 16 24 32

20
40
60
80

100

nis4
nis2
nis1
fub4

20
40
60
80

100
20
40
60
80

100

8 16 24 32

20
40
60
80

100

8 16 24 32

20
40
60
80
100
20
40
60
80
100
20
40
60
80
100

8 16 24 32

20
40
60
80
100

vortex

li

gcc

compress hydro2d

swim

tomcatv

wave

Load latency tolerance (cycles)

C
u

m
u

la
ti
v
e

 %
 o

f
lo

a
d

s
 c

o
m

p
le

te
d

Figure 5: Performance-based completion and Latency
Tolerance

eir
res
en-

ns
2

nd

-
e
e

e.
d

duces IPC values up to 35% lower than ideal. Therefore,
we do not consider thresholds of one or two further in this
paper. Similarly, we omit further discussion of functional
unit utilization since the decreased latency tolerance more
than offsets the marginal increase in IPC.

5.3 Determining Which Loads to Complete

Now that we’ve determined that either mispredicted
branches attaching to a load’s dependence graph or the
instruction issue rate falling below 4 should force load
completion, we focus on identifying which outstanding
load to complete. Completing the load at the head of the
LSQ (fifo) can prevent processor stalls due to the RUU/
LSQ being full and thus help alleviate the finite resource
problem. On the other hand, completing the load with the
maximum depth (in cycles) of dependent instructions (dg)
will help tackle the data dependency problem by freeing
up the most dependent instructions and thereby keep the
processor maximally utilized

Figure 6 shows the effect of the load selection policy on
instructions per cycle and Figure 7 shows the correspond-
ing latency tolerance values. The figures show that both
the fifo and dg load selection policies produce almost
identical IPC numbers. However completing loads based
on the dependence graph depth increases the latency toler-
ance of loads for the floating point benchmarks. These
results provide further evidence of the variation in load
latency tolerance, and indicate that completing loads in
program order is not necessarily the “best” schedule for
exploiting latency tolerance.

5.4 Determining When to Complete Loads

Having decided to complete the loads with the maxi-
mum depth of dependent instructions, we proceed to
investigate when such loads should be completed. The
load completion time controls the amount of time avail-
able for the pipeline to fill up with ready instructions. We
study the effect of completing loads the same cycle as
detecting performance degradation (pipeline fill-up time of
zero - fut0), one cycle earlier (fut1) and two cycles earlier
(fut2) on load latency tolerance. Note this only applies to
loads not forced to complete by a mispredicted branch.
From Figure 8,we see that IPC goes down for all bench-
marks exceptcompress , gcc andli as we decrease the
pipeline fill-up time. These three benchmarks have a sig-
nificant number of loads completed due to mispredicted
branches. Hence fill up time has less impact.Swim shows
the highest degradation in IPC, going down from within
3% of ideal for fut2 to within 10% of ideal for fut0. Look-
ing at the corresponding latency tolerance graphs in
Figure 9, latency tolerance generally increases as we
decrease the fill up time. These results match our expecta-

tions, completing loads earlier obviously decreases th
latency tolerance. Furthermore, the processor requi
some recovery time as results propagate down the dep
dence graph and a sufficient number of instructio
become ready to execute. Using a pipeline fill-up time of
cycles (fut2) produces the best combination of IPC a
latency tolerance numbers.

5.5 Limiting the Number of Completed Loads

Finally, achieving IPCs close to that of an ideal mem
ory system will likely require completing more than on
load per cycle. Keeping all other parameters fixed, w
examine limits of one (nl1), two (nl2) and four (nl4) on the
number of loads that can complete in a single cycl
Figure 10 shows the impact of these limits on IPC an

Figure 6: Load Selection and IPC
compress gcc li vortexhydro2d swim tomcatv wave0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

IP
C

ideal (1 cycle)
fifo
dg
memlat32-dm32k
fixed (8 cycles)

8 16 24 32

20
40
60
80

100

fifo
dg

20
40
60
80

100
20
40
60
80

100

8 16 24 32

20
40
60
80

100

8 16 24 32

20
40
60
80
100
20
40
60
80
100
20
40
60
80
100

8 16 24 32

20
40
60
80
100

vortex

li

gcc

compress hydro2d

swim

tomcatv

wave

Load latency tolerance (cycles)

C
u

m
u

la
ti
v
e

 %
 o

f
lo

a
d

s
 c

o
m

p
le

te
d

Figure 7: Load Selection and Latency Tolerance

ns
gle
n-

ing
ord-

e
ce
in
e
m-
y
e.
ses
Q

bit
Figure 11 shows the corresponding latency tolerance num-
bers. The overall trend we observe from this data is that, as
we increase the limit on the number of loads that can com-
plete in a cycle from 1 to 4, IPC increases and the latency
tolerance decreases. This is in line with our expectations,
since a lower limit causes some loads to complete later
than they should according to our policies, which causes a
decrease in IPC.

5.6 Effects of Processor Architecture

To evaluate the impact of various microarchitectural
changes on our measurements, we evaluated a configura-
tion with 128 RUU entries and 64 LSQ entries, and a four
issue processor for both the 128/64 and 256/128 RUU/
LSQ configurations. In the case of the four issue proces-

sor, we used an issue rate threshold of three instructio
per cycle and up to three loads can complete in a sin
cycle. Figure 12 shows the effect of various processor co
figurations on IPC and Figure 13 shows the correspond
latency tolerance numbers. The graphs are labeled acc
ing to issue-width/RUU entries/LSQ entries.

The first observation from this data is that the issu
width has a much larger impact on IPC than buffer spa
does. We note that all the IPC values shown are with
11% of the corresponding ideal memory system. Also, w
see that the IPC values are mostly independent of the nu
ber of RUU/LSQ entries. However, the situation is ver
different with respect to the amount of latency toleranc
From Figure 13, we see that latency tolerance increa
when either the issue width decreases or the RUU/LS
entries increases. The floating point programs exhi

Figure 8: Completion Time and IPC
compress gcc li vortexhydro2d swim tomcatv wave0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

IP
C

ideal (1 cycle)
fut2
fut1
fut0
memlat32-dm32k
fixed (8 cycles)

8 16 24 32

20
40
60
80

100

fut2
fut1
fut0

20
40
60
80

100
20
40
60
80

100

8 16 24 32

20
40
60
80

100

8 16 24 32

20
40
60
80
100
20
40
60
80
100
20
40
60
80
100

8 16 24 32

20
40
60
80
100

vortex

li

gcc

compress hydro2d

swim

tomcatv

wave

Load latency tolerance (cycles)

C
u

m
u

la
ti
v
e

 %
 o

f
lo

a
d

s
 c

o
m

p
le

te
d

Figure 9: Completion Time and Latency Tolerance

Figure 10: Loads Completed and IPC

compress gcc li vortexhydro2d swim tomcatv wave0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

IP
C

ideal (1 cycle)
nl4
nl2
nl1
memlat32-dm32k
fixed (8 cycles)

8 16 24 32

20
40
60
80

100

nl4
nl2
nl1

20
40
60
80

100
20
40
60
80

100

8 16 24 32

20
40
60
80

100

8 16 24 32

20
40
60
80
100
20
40
60
80
100
20
40
60
80
100

8 16 24 32

20
40
60
80
100

vortex

li

gcc

compress hydro2d

swim

tomcatv

wave

Load latency tolerance (cycles)

C
u

m
u

la
ti
v
e

 %
 o

f
lo

a
d

s
 c

o
m

p
le

te
d

Figure 11: Loads Completed and Latency Tolerance

nd-
am
to
y-
2
ra-
n 8
ds
es,
ed
n

he
and

,
ith
on
y
f 8
nd
he
g
he
tic-
cy
or
red
he
L1

In
ot
cy
is-
the

se
ant
the
n-

of
its.
L1
fy-

e

n-
t
re

ds
larger increases than the integer programs. The most strik-
ing change is forswim with the 4/256/128 configuration,
nearly all its memory references can complete in the 32
cycle limit.

5.7 Traditional Memory Hierarchies

The results presented thus far indicate that programs do
exhibit variations in load latency tolerance. We now evalu-
ate how well traditional memory systems meet an applica-
tion’s inherent latency demands. To determine this, we
track which level in a traditional memory hierarchy satis-

fies each load and increment a counter for the correspo
ing measured latency tolerance. This produces a histogr
for each level in the memory hierarchy, and allows us
evaluate the memory hierarchy’s effectiveness with var
ing access times for each level. For example, if the L
access time is 8 cycles, then to avoid performance deg
dation, loads with measured latency tolerance less tha
cycles should be satisfied by the L1 cache. Similarly, loa
with measured latency greater than or equal to 8 cycl
but less than main memory access time, could be satisfi
by the L2 cache. Clearly, we can perform this computatio
for arbitrary access times. Furthermore, we can track t
discrepancy between where a load should be satisfied
where it is actually satisfied in the memory hierarchy.

We performed this analysis on 8KB, 16KB, and 32KB
direct-mapped and two-way set-associative L1 caches w
32-byte blocks, using the base L2 cache configurati
(1MB, 64-byte blocks). For brevity, we report results onl
for the direct-mapped caches and an L2 access time o
cycles on the 8-issue processor with 256 RUU entries a
128 LSQ entries. Table 1 shows the effectiveness of t
traditional two-level memory hierarchies at capturin
latency tolerance. The top row for each benchmark in t
table indicates the percentage of loads satisfied by a par
ular level in the memory hierarchy with measured laten
tolerance less than 8 cycles. Similarly, the bottom row f
each benchmark corresponds to loads with measu
latency greater than or equal to 8 cycles. The levels of t
memory hierarchy are the load/store queue (LSQ),
cache, L2 cache, and main memory.

We focus our discussion on the L1 and L2 caches.
particular, the number of low latency loads (< 8 cycles) n
satisfied by the L1 cache and the number of high laten
loads (>= 8 cycles) satisfied by the L1 indicates the m
match between the applications latency demands and
latency incurred in the memory hierarchy. From the
results we see that some benchmarks exhibit signific
discrepancy between their latency demands and
latency that’s incurred in a real memory hierarchy. Co
sider the 16KB cache forswim , 16% of loads require low
latency but are satisfied by the L2 cache, whereas 29%
loads have enough latency tolerance and are L1 cache h
Ideally, those references should be swapped, with the
cache satisfying the low latency loads and the L2 satis
ing the high latency loads

Compress is another striking example, with 16% to
22% of its loads requiring low latency but missing in th
L1 cache. However, we note thatcompress has very few
high latency loads for this processor configuration. In co
trast, forswim 2% to 36% of loads require low latency ye
miss in the L1 cache, whereas 13% to 37% of loads a
high latency and hit in the L1. Finally, for the floating
point benchmarks a noticeable fraction (1%-3%) of loa

Figure 12: Processor Architecture and IPC (Issue-
width/RUU-size/LSQ-size)

compress gcc li vortexhydro2d swim tomcatv wave0.0

1.0

2.0

3.0

4.0

5.0

6.0

IP
C

4/128/64
4/256/128
8/128/64
8/256/128

8 16 24 32

20
40
60
80

100

4/128/64
4/256/128
8/128/64
8/256/128

20
40
60
80

100
20
40
60
80

100

8 16 24 32

20
40
60
80

100

8 16 24 32

20
40
60
80
100
20
40
60
80
100
20
40
60
80
100

8 16 24 32

20
40
60
80
100

vortex

li

gcc

compress hydro2d

swim

tomcatv

wave

Load latency tolerance (cycles)

C
u

m
u

la
ti
v
e

 %
 o

f
lo

a
d

s
 c

o
m

p
le

te
d

Figure 13: Processor Architecture and Latency
Tolerance (Issue-width/RUU-size/LSQ-size)

he

lly
e a
y
ly-

ts
cy
uld
ce
m-

on
ar-
on
require low latency but are satisfied by main memory. As
the disparity between processor cycle time and main mem-
ory access time increase, even this small fraction of refer-
ences can dramatically reduce overall performance.

The mismatch between an application’s latency
demands and the actual latency is dependent on the perfor-
mance of the real memory hierarchy. In general, we see
that reducing the L1 cache size increases the discrepancy.
The floating point benchmarks show dramatic increases as
the cache size is reduced.Swim and tomcatv go from
2% low latency L1 load misses in the 32KB cache to 36%
and 22%, respectively, in the 8KB cache. Although not
shown, reducing the boundary from 8 cycles to 6 cycles
can increase the number of low latency load misses in the
L1 cache. Also, our results (not shown) indicate that
increasing the L1 associativity has very little effect on the
match between the application’s latency demands and the

memory hierarchy’s performance, when compared to t
direct-mapped caches.

6 Conclusion

This paper explores latency tolerance in dynamica
scheduled processors. Our two primary contributions ar
quantitative evaluation of applications’ inherent latenc
tolerance in dynamically scheduled processors, and ana
sis of how well a conventional memory hierarchy mee
the application’s latency demands. We compute laten
tolerance by measuring the number of cycles a load co
take to complete without adversely affecting performan
compared to an ideal memory system where all loads co
plete in one cycle.

Our measurements show that load latency is a functi
of the number and type of dependent instructions. In p
ticular, mispredicted branches have a significant impact

Benchmark Latency

Where the Load is Satisfied in a Traditional Memory System

LSQ L1 Cache L2 Cache Memory

8K 16K 32K 8K 16K 32K 8K 16K 32K 8K 16K 32K

compress
< 8 11% 11% 11% 65% 68% 71% 22% 19% 16% 0 0 0

>= 8 0 0 0 2% 2% 2% 1% 1% 0 0 0 0

gcc
< 8 7% 7% 7% 75% 77% 73% 5% 3% 2% 0 0 0

>= 8 1% 1% 2% 10% 10% 16% 1% 0 0 0 0 0

li
< 8 9% 9% 9% 80% 81% 81% 3% 2% 2% 0 0 0

>= 8 2% 2% 2% 7% 7% 7% 0 0 0 0 0 0

vortex
< 8 17% 17% 17% 52% 53% 54% 4% 3% 2% 0 0 0

>= 8 5% 5% 5% 21% 21% 21% 1% 1% 0 0 0 0

hydro2d
< 8 22% 22% 22% 60% 61% 62% 6% 5% 4% 3% 3% 3%

>= 8 0 0 0 7% 8% 8% 1% 1% 1% 0 0 0

swim
< 8 5% 5% 5% 26% 45% 59% 36% 16% 2% 2% 2% 3%

>= 8 0 0 0 13% 29% 37% 18% 8% 1% 1% 1% 1%

tomcatv
< 8 11% 11% 11% 20% 31% 39% 22% 11% 2% 3% 3% 4%

>= 8 0 0 0 17% 31% 36% 21% 7% 3% 6% 6% 6%

wave
< 8 26% 26% 26% 37% 44% 48% 17% 10% 6% 1% 1% 1%

>= 8 4% 4% 4% 8% 12% 14% 7% 3% 1% 0 0 0

Table 1: Effectiveness of Traditional Memory System at Capturing Latency Tolerance

.
h

c-

l

re-

-

.

-

ce

r-
n
m

n
i-

n
l

-
d

ta

r

d
e
-

s

er
measured latency tolerance for the integer benchmarks.
We also observe that most programs do exhibit some
latency tolerance, and still obtain IPC values comparable
to an ideal memory system. Our results show that between
1% and 62% of loads must complete in one cycle, and
between 5% and 98% must complete within 8 cycles,
depending on processor configuration.

We show that for some benchmarks, a significant num-
ber of loads could be satisfied in latencies on the order of
second level cache access times, while others must be sat-
isfied by the first level cache. Unfortunately, this discrep-
ancy in latency tolerance is ignored by conventional
memory hierarchies that always fetch data into the primary
cache. We plan to investigate methods for utilizing latency
tolerance information in memory hierarchy management.
Prefetching [11] is clearly one avenue for exploiting this
information. Alternatively, we could place data in the
memory hierarchy according to the corresponding load’s
latency tolerance and bypass higher levels of the memory
hierarchy [1,7,20], or prioritize requests in a system that
supports multiple outstanding misses.

7 Acknowledgments

We would like to thank Chia-Lin Yang, Mithuna Thot-
tethodi, Robert Wagner, and the anonymous referees for
their helpful feedback on earlier versions of this paper.

8 References

[1] Santosh G. Abraham, Rabin A. Sugumar, Daniel Wind-
heiser, B. R. Rau, and Rajiv Gupta. Predictability of Load/
Store Instruction Latencies.Proceedings of the 26th
Annual International Symposium on Microarchitecture,
pages 139–152, December 1993.

[2] Doug C. Burger, Todd M. Austin, and Steve Bennett. Eval-
uating Future Microprocessors-the SimpleScalar Tool Set.
Technical Report 1308, University of Wisconsin–Madison
Computer Sciences Department, July 1996.

[3] S. Dutta and M. Franklin. Block-Level Prediction for
Wide-Issue Superscalar Processors. InProceedings of 1st
International Conference on Algorithms and Architectures
for Parallel Processing, volume 1, pages 143–152, 1995.

[4] Harry Dwyer and H. C. Torng. An Out-of-Order Supersca-
lar Processor with Speculative Execution and Fast, Precise
Interrupts. InProceedings of the 25th Annual International
Symposium on Microarchitecture, pages 272–281, 1992.

[5] John L. Hennessy and David A. Patterson.Computer
Architecture: A Quantitative Approach. Morgan Kauf-
mann, 2 edition, 1995.

[6] W. W. Hwu, S. A. Mahlke, W. Y. Chen, P. P. Chang, N. J.
Warter, R. A. Bringmann, R. G. Ouellette, R. E. Hank,
T. Kiyohara, G. E. Haab, J. G. Holm, and D. M. Lavery.
"The superblock: An effective structure for VLIW and
superscalar compilation. Technical report, University of
Illinois, Urbana, IL Center for Reliable and High-Perfor-
mance Computing, February 1992.

[7] Teresa L. Johnson and Wen mei W. Hwu. Run-time Adap-
tive Cache Hierarchy Management via Reference Analysis.
In Proceedings of the 24th Annual International Sympo-
sium on Computer Architecture, page to appear, June 1997.

[8] Lizyamma Kurian, Paul T. Hulina, and Lee D. Coraor
Memory Latency Effects in Decoupled Architectures wit
a Single Data Memory Module. InProceedings of the 19th
Annual International Symposium on Computer Archite
ture, pages 236–245, 1992.

[9] Monica S. Lam and Robert P. Wilson. Limits of Contro
Flow on Parallelism. InProceedings of the 19th Annual
International Symposium on Computer Architecture, pages
46–57, 1992.

[10] K. N. Menezes, S. W. Sathaye, and T. M. Conte. Path p
diction for high issue-rate processors. InProceedings of
the 1997 International Conference on Parallel Architec
tures and Compilation Techniques, pages 178–188,
November 1997.

[11] Todd C. Mowry, Monica S. Lam, and Anoop Gupta
Design and Evaluation of a Compiler Algorithm for
Prefetching. InProceedings of the Fifth International Con-
ference on Architectural Support for Programming Lan
guages and Operating Systems (ASPLOS V), pages 62–73,
1992.

[12] Eric Rotenberg, Steve Bennett, and James E. Smith. Tra
Cache: a Low Latency Approach to High Bandwidth
Instruction Fetching. InProceedings of the 29th Annual
International Symposium on Microarchitecture, pages 24–
34, Dec 1996.

[13] Stuart Sechrest, Chih-Chieh Lee, and Trevor Mudge. Co
relation and Aliasing in Dynamic Branch Predictors. I
Proceedings of the 23rd Annual International Symposiu
on Computer Architecture, pages 22–32, 1996.

[14] J.E. Smith. A Study of Branch Prediction Strategies. I
Proceeding of 8th Annual Symposium on Computer Arch
tecture, pages 135–148, May 1981.

[15] Avinash Sodani and Gurindar S. Sohi. Dynamic Instructio
Reuse. InProceedings of the 24th Annual Internationa
Symposium on Computer Architecture, pages 194–205,
June 1997.

[16] Gurindar Sohi. Instruction Issue Logic for High Perfor
mance, Interruptable, Multiple Functional Unit, Pipeline
Computers.IEEE Transactions on Computers, 39(3):349–
359, March 1990.

[17] James E. Thornton. Parallel Operation of the Control Da
6600. In AFIPS Proc. FJCC, volume 26, pages 33–40,
1964.

[18] R. M. Tomasulo. An Efficient Algorithm for Exploiting
Multiple Arithmetic Units.IBM Journal, pages 25–33, Jan-
uary 1967.

[19] Thang Tran and Chuan lin Wu. Limitation of Superscala
Microprocessor Performance. InProceedings of the 25th
Annual International Symposium on Microarchitecture,
pages 33–36, 1992.

[20] Gary Tyson, Matthew Farrens, John Matthews, an
Andrew R. Pleszkun. A Modified Approach to Data Cach
Management. InProceedings of the 28th Annual Interna
tional Symposium on Microarchitecture, December 1995.
to appear.

[21] Tse-Yu Yeh and Yale N. Patt. Alternative Implementation
of Two-Level Adaptive Branch Prediction. InProceedings
of the 19th Annual International Symposium on Comput
Architecture, pages 124–134, 1992.

	Abstract
	1 Introduction
	2 Background
	2.1 Scheduling, Prediction, and Speculation
	1. Data Dependencies: If the operands of instruction i are produced by a previous instruction j, ...
	2. Finite Resources: The number of instructions the processor can look ahead to identify independ...
	3. Branch Misprediction: When the predicted outcome of a branch is incorrect, the work performed ...

	3 Measuring Load Latency Tolerance
	1. Determining that one or more loads should complete,
	2. Determining when the load(s) should complete,
	3. Determining which specific load(s) should complete, and
	4. Determining how many loads should complete.
	3.1 Determining that Loads Should Complete
	Branch-based Load Completion
	Performance-based Load Completion

	3.2 Determining Which Loads to Complete
	3.3 Determining When Should Loads Complete
	3.4 Determining How Many Loads to Complete

	4 Experimental Methodology
	5 Experimental Results
	5.1 Fixed Latency Memory Systems
	Figure 1: Memory System Configuration and IPC

	5.2 Determining that Loads Must Complete
	Branch Prediction and Load Latency Tolerance
	Figure 2: Branch Prediction and IPC.
	Figure 3: Branch Prediction and Latency Tolerance

	Processor Performance and Load Latency Tolerance
	Figure 4: Performance-based completion and IPC
	Figure 5: Performance-based completion and Latency Tolerance

	5.3 Determining Which Loads to Complete
	5.4 Determining When to Complete Loads
	Figure 6: Load Selection and IPC
	Figure 7: Load Selection and Latency Tolerance
	Figure 8: Completion Time and IPC
	Figure 9: Completion Time and Latency Tolerance

	5.5 Limiting the Number of Completed Loads
	Figure 10: Loads Completed and IPC
	Figure 11: Loads Completed and Latency Tolerance

	5.6 Effects of Processor Architecture
	Figure 12: Processor Architecture and IPC (Issue- width/RUU-size/LSQ-size)
	Figure 13: Processor Architecture and Latency Tolerance (Issue-width/RUU-size/LSQ-size)

	5.7 Traditional Memory Hierarchies
	Table 1: Effectiveness of Traditional Memory System at Capturing Latency Tolerance

	6 Conclusion
	7 Acknowledgments
	8 References
	[1] Santosh�G. Abraham, Rabin�A. Sugumar, Daniel Windheiser, B.�R. Rau, and Rajiv Gupta. Predicta...
	[2] Doug�C. Burger, Todd�M. Austin, and Steve Bennett. Evaluating Future Microprocessors-the Simp...
	[3] S.�Dutta and M.�Franklin. Block-Level Prediction for Wide-Issue Superscalar Processors. In Pr...
	[4] Harry Dwyer and H.�C. Torng. An Out-of-Order Superscalar Processor with Speculative Execution...
	[5] John�L. Hennessy and David�A. Patterson. Computer Architecture: A Quantitative Approach. Morg...
	[6] W.�W. Hwu, S.�A. Mahlke, W.�Y. Chen, P.�P. Chang, N.�J. Warter, R.�A. Bringmann, R.�G. Ouelle...
	[7] Teresa�L. Johnson and Wen mei W.�Hwu. Run-time Adaptive Cache Hierarchy Management via Refere...
	[8] Lizyamma Kurian, Paul�T. Hulina, and Lee�D. Coraor. Memory Latency Effects in Decoupled Archi...
	[9] Monica�S. Lam and Robert�P. Wilson. Limits of Control Flow on Parallelism. In Proceedings of ...
	[10] K.�N. Menezes, S.�W. Sathaye, and T.�M. Conte. Path prediction for high issue-rate processor...
	[11] Todd�C. Mowry, Monica�S. Lam, and Anoop Gupta. Design and Evaluation of a Compiler Algorithm...
	[12] Eric Rotenberg, Steve Bennett, and James�E. Smith. Trace Cache: a Low Latency Approach to Hi...
	[13] Stuart Sechrest, Chih-Chieh Lee, and Trevor Mudge. Correlation and Aliasing in Dynamic Branc...
	[14] J.E. Smith. A Study of Branch Prediction Strategies. In Proceeding of 8th Annual Symposium o...
	[15] Avinash Sodani and Gurindar�S. Sohi. Dynamic Instruction Reuse. In Proceedings of the 24th A...
	[16] Gurindar Sohi. Instruction Issue Logic for High Performance, Interruptable, Multiple Functio...
	[17] James�E. Thornton. Parallel Operation of the Control Data 6600. In AFIPS Proc. FJCC, volume�...
	[18] R.�M. Tomasulo. An Efficient Algorithm for Exploiting Multiple Arithmetic Units. IBM Journal...
	[19] Thang Tran and Chuan lin Wu. Limitation of Superscalar Microprocessor Performance. In Procee...
	[20] Gary Tyson, Matthew Farrens, John Matthews, and Andrew�R. Pleszkun. A Modified Approach to D...
	[21] Tse-Yu Yeh and Yale�N. Patt. Alternative Implementations of Two-Level Adaptive Branch Predic...

